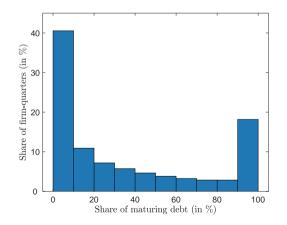
Corporate debt maturity matters for monetary policy

Joachim Jungherr University of Bonn Matthias Meier


University of Mannheim

Timo Reinelt San Francisco Fed Immo Schott Federal Reserve Board

January 2025

Motivation

Debt is the main source of external firm financing but not all debt is created equal...

Share of maturing debt =

 $\frac{\text{debt maturing within next 12 months}}{\text{total firm debt}}$

Consider a change of interest rates by the central bank...

- **Small** share of maturing debt
- Investment response?

- ► Large share of maturing debt
- Investment response?

Roll-over risk:

Large share of maturing debt

- \Rightarrow high **roll-over** per period
- \Rightarrow high pass-through of interest rate changes to cash flow
- \Rightarrow should increase investment response!

Debt overhang:

Small share of maturing debt

 \Rightarrow long remaining **maturity**

 \Rightarrow interest rate and inflation have strong effect on real burden of nominal debt (Gomes-Jermann-Schmid *AER* 2016)

 \Rightarrow should increase investment response!

Empirical analysis:

- Bond-level information
- Firm-level balance sheet data
- Monetary policy shocks

Result:

Firm investment responds more strongly to monetary policy shocks when share of maturing bonds is larger

Model:

- ► New Keynesian heterogeneous firm model
- ► financial frictions and endogenous debt maturity

Results:

- Model matches cross-sectional patterns in firm size, age, debt maturity, leverage, credit spreads
- In line with empirical results, firms respond more strongly when maturing bond share is larger

Aggregate effects:

- Conventional (ST + LT interest rates) vs. Unconventional MP (only LT interest rate)
- Unconventional MP: larger effect on corporate debt maturity but smaller effect on output and inflation

Literature

• Empirical evidence on debt maturity and financial crises:

Duchin Ozbas Sensoy 10, Almeida Campello Laranjeira Weisbenner 12, Benmelech Frydman Papanikolaou 19, Buera Karmakar 22, Kalemli-Ozcan Laeven Moreno 22, ...

Empirical evidence on monetary policy and firm heterogeneity: Gertler Gilchrist 94, Ippolito Ozdagli Perez-Orive 18, Jeenas 19, Ottonello Winberry 20, Darmouni Giesecke Rodnyansky 21, Gurkaynak Karasoy-Can Lee 22, Cloyne Ferreira Froemel Surico 23, Anderson Cesa-Bianchi 24, ...

Heterogeneous firm models with financial frictions: Bernanke Gertler Gilchrist 99, Cooley Quadrini 01, Khan Thomas 13, Gomes Jermann Schmid 16, Khan Senga Thomas 16, Crouzet 18, Arellano Bai Kehoe 19, Ottonello Winberry 20, ...

- 1. Introduction
- 2. Empirical Evidence
- 3. Model
- 4. Quantitative Analysis

1. Introduction

2. Empirical Evidence

3. Model

4. Quantitative Analysis

- ► Bond-level information from Fixed Income Securities Database (FISD)
- Firm-level balance sheet data from Compustat

► Baseline sample:

- Listed non-financial US firms with outstanding bonds
- ► **35,000** firm-quarters from 1995Q2 to 2018Q3
- two thirds of sales and fixed assets in Compustat
- ▶ bonds account for 62% of debt in firm sample and 40% of debt in Compustat

Key variable: Maturing bond share of firm *i* in quarter *t*

$$\mathcal{M}_{it} = \frac{\text{maturing bonds (in \$)}_{it}}{\text{total debt (in \$)}_{it-1}}$$

Distribution

Looking for causal effects of MP:

- ► central bank responds to changes in economy ⇒ large part of variation of interest rates endogenous
- ▶ isolate surprise component from anticipated changes
- high frequency identification:
 - ► 30 min window around FOMC announcement
 - price change of Federal Funds Futures (Gertler-Karadi AEJ:Macro 2015)

Panel local projections:

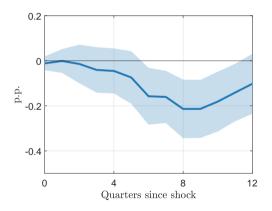
$$\log k_{it+h} - \log k_{it-1} = \delta_i^h + \delta_{st}^h + \beta_0^h \mathcal{M}_{it} + \beta_1^h \mathcal{M}_{it} \varepsilon_t^{\mathsf{MP}} + \nu_{it+h}^h$$

Regress changes in firm-level **capital** k_{it} at forecast horizon h on...

- firm-fixed effect δ_i^h
- sector-time-fixed effect δ_{st}^h
- **•** maturing bonds share \mathcal{M}_{it}
- monetary policy shock ε_t^{MP}

Key coefficient: $\beta_1^h \dots$

Panel local projections:

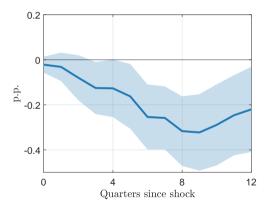

$$\log k_{it+h} - \log k_{it-1} = \delta_i^h + \delta_{st}^h + \beta_0^h \mathcal{M}_{it} + \beta_1^h \mathcal{M}_{it} \varepsilon_t^{\mathsf{MP}} + \nu_{it+h}^h$$

Regress changes in firm-level **capital** k_{it} at forecast horizon h on...

- Firm-fixed effect δ_i^h
- sector-time-fixed effect δ_{st}^h
- **•** maturing bonds share \mathcal{M}_{it}
- monetary policy shock ε_t^{MP}

Key coefficient: $\beta_1^h \dots$

Baseline Estimation



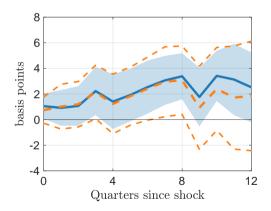
Excess **capital response** associated to \mathcal{M}_{it} :

- contractionary 1-std
 MP shock ε^{MP}_t
- *M_{it}* is 1 std higher
 ⇒ 8 quarters later firm capital
 0.2% smaller
- about 30% of average capital response
- ▶ 95% confidence intervals

Av. Response

Estimation: Robustness

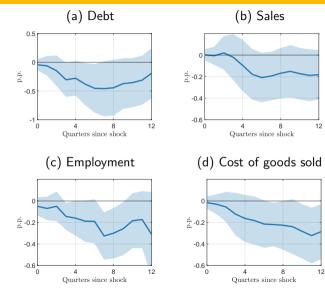
Excess **capital response** associated to $\mathcal{M}_{it} - \overline{\mathcal{M}}_i$:


► substitute *M_{it}* by within-firm deviation from firm-specific mean: *M_{it}* - *M_i*

controls:

- assets
- ► age
- leverage
- asset liquidity
- sales growth
- average maturity

Excess credit spread response associated to \mathcal{M}_{it} :



- contractionary 1-std
 MP shock
 e^{MP}_t
- *M_{it}* is 1 std higher
 ⇒ 8 quarters later credit spread
 3 bp higher
- about 10% of average credit spread response
- ► orange dashed: within-firm deviation M_{it} M
 _i and controls

Time serie

Av. Response

Estimation: More LHS Variables

Quantitative Analysis

Introduction

Empirical Evidence

Model

- Alternative MP shocks Link
- Alternative time samples Link
- Including non-bond-issuing firms Link
- Callable bonds and variable-coupon bonds Link
- Compustat maturing debt share Link
- ► Alternative denominators in \mathcal{M}_{it} Link
- Non-linear specifications Link

- 1. Introduction
- 2. Empirical Evidence
- 3. Model
- 4. Quantitative Analysis

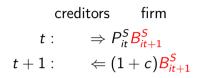
- ► New Keynesian model
- ► Heterogeneous firms
- ► Equity vs. debt
- Endogenous debt maturity

Firm problem:

Intermediate goods produced:

$$y_{it} = oldsymbol{z_{it}} \left(k^{\psi}_{it} l^{1-\psi}_{it}
ight)^{\zeta}$$

 z_{it} : firm-specific productivity k_{it} : capital l_{it} : labor


Firm earnings (before interest and taxes):

$$p_t y_{it} - w_t I_{it} + (\varepsilon_{it} - \delta) Q_t k_{it} - f$$

 p_t : price of intermediate goods w_t : wage ε_{it} : firm-specific capital quality shock δ : depreciation Q_t : price of capital goods f: fixed cost of production

Model Setup

Short-term debt:

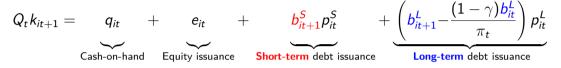
Long-term debt:

creditors firm $t: \Rightarrow P_{it}^{L}B_{it+1}^{L}$ $t+1: \iff (\gamma+c)B_{it+1}^{L}$ $t+2: \iff (1-\gamma)(\gamma+c)B_{it+1}^{L}$ $t+3: \iff (1-\gamma)^{2}(\gamma+c)B_{it+1}^{L}$ $t+4: \iff \dots$

Introduction

Model Setup

Cash-on-hand after production and payment of **debt** and **taxes**:


$$q_{it} = Q_t k_{it} - \frac{b_{it}^S}{\pi_t} - \frac{\gamma b_{it}^L}{\pi_t} + (1 - \tau) \left[p_t y_{it} - w_t I_{it} + (\varepsilon_{it} - \delta) Q_t k_{it} - f - \frac{c(\frac{b_{it}^S}{\mu_t} + \frac{b_{it}^L}{\pi_t})}{\pi_t} \right]$$

 b_{it}^{S} : short-term debt (deflated by price level in t-1) b_{it}^{L} : long-term debt (deflated by price level in t-1) π_{t} : inflation τ : corporate income tax

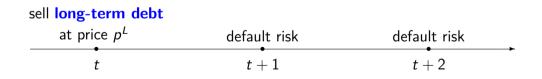
Benefit of debt: *c* is tax deductible **Cost** of debt: firm cannot commit to repaying \Rightarrow default cost ξ

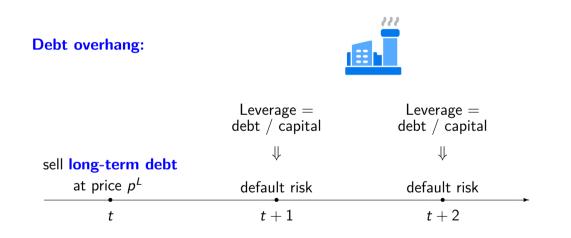
Model Setup

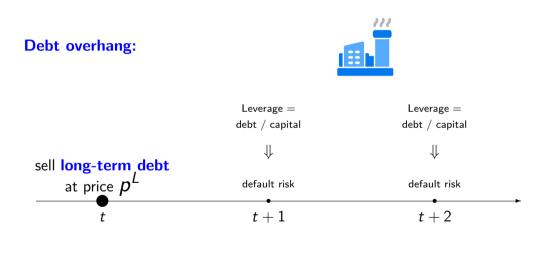
Next period's capital stock:

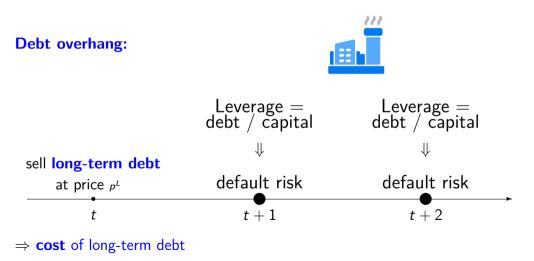
Perfectly competitive creditors:

$$\begin{split} p_{it}^{S} &= \mathbb{E} \, \frac{\beta u'(C_{t+1})}{u'(C_{t})} \int_{\varepsilon_{it+1}} \left[(1 - \mathcal{D}_{it+1}) \frac{1 + c}{\pi_{t+1}} + \mathcal{D}_{it+1} \frac{(1 - \xi) \underline{q}_{it+1}}{b_{it+1}^{S} + b_{it+1}^{L}} \right] d\varphi(\varepsilon_{it+1}) \\ p_{it}^{L} &= \mathbb{E} \, \frac{\beta u'(C_{t+1})}{u'(C_{t})} \int_{\varepsilon_{it+1}} \left[(1 - \mathcal{D}_{it+1}) \frac{\gamma + c + (1 - \gamma) \mathbb{E} \, p_{it+1}^{L}}{\pi_{t+1}} \right] \\ &+ \mathcal{D}_{it+1} \frac{(1 - \xi) \underline{q}_{it+1}}{b_{it+1}^{S} + b_{it+1}^{L}} \right] d\varphi(\varepsilon_{it+1}) \end{split}$$


Quantitative Analysis


- convex cost of equity issuance
- ► convex cost of debt issuance ⇒ **benefit** of long-term debt


What is the **cost** of long-term debt?


Debt overhang:

Model: General Equilibrium

- Representative household: C_t and L_t
- Retail firms: Phillips curve $\Rightarrow p_t, \pi_t$
- Capital goods producers: $\Rightarrow Q_t$
- ► Monetary policy: Taylor rule

Endogenous firm distribution $\mu_t(q_{it}, b_{it}, z_{it+1})$:

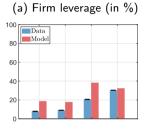
- ► cash-on-hand *q*_{it}
- outstanding long-term debt b_{it}
- idiosyncratic firm-productivity z_{it+1}

• Details Firm Problem

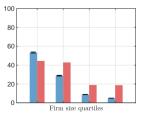
- 1. Introduction
- 2. Empirical Evidence

3. Model

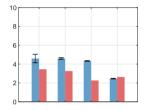
4. Quantitative Analysis

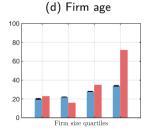

Important calibration targets:

Target	Data	Model
Mean firm leverage	34.4%	30.9%
Mean share of debt maturing within a year	30.5%	30.6%
Mean credit spread on long-term debt	3.1%	2.7%
Mean equity issuance / assets	11.4%	15.0%


▶ Full Calibration

Solution method


Model: Cross-Section by Firm Size



(c) Share of debt due within a year (in %)

(b) Credit spread on long-term debt (in %)

Introduction

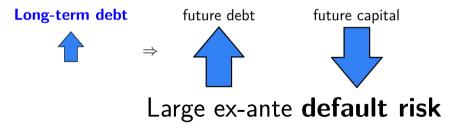
Empirical Evidence

Model

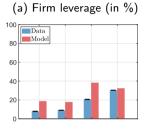
Quantitative Analysis


Choice of debt and capital affects default risk

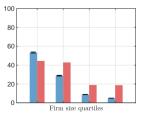
Part of default costs borne by existing long-term creditors

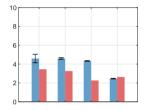

Choice of debt and capital affects default risk

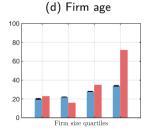
Part of default costs borne by existing long-term creditors



Choice of debt and capital affects default risk


Part of default costs borne by existing long-term creditors


Model: Cross-Section by Firm Size



(c) Share of debt due within a year (in %)

(b) Credit spread on long-term debt (in %)

Introduction

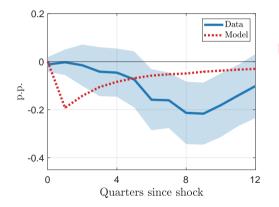
Empirical Evidence

Model

Quantitative Analysis

Monetary policy shock:

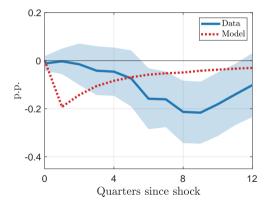
- persistent shock ε_t^{MP} to Taylor rule
- firms at different points of distribution $\mu_t(q_{it}, b_{it}, z_{it+1})$ respond **differently**


▶ role of \mathcal{M}_{it} ?

 \Rightarrow run same regressions as in empirical analysis on simulated model data

► Aggegate response to MP shock

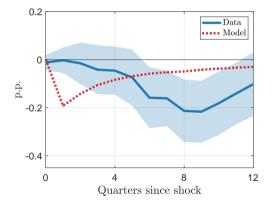
Model: Monetary Policy Shock


$$\log k_{it+h} - \log k_{it-1} = \dots + \beta_0^h \mathcal{M}_{it} + \beta_1^h \mathcal{M}_{it} \varepsilon_t^{\mathsf{MP}} + \dots + \nu_{it+h}^h$$

Roll-over risk:

Model: Monetary Policy Shock

$$Q_{t}k_{it+1} = q_{it} + e_{it} + \frac{b_{it+1}^{S}}{b_{it}^{S}} + \left(\frac{b_{it+1}^{L}}{\pi_{t}} - \frac{(1-\gamma)b_{it}^{L}}{\pi_{t}}\right)p_{it}^{L}$$



Roll-over risk:

- ► higher \mathcal{M}_{it} ⇒ higher b_{it+1}^S and lower b_{it+1}^L ⇒ more **roll-over**
- higher pass-through of p^S_{it} and p^L_{it} to cash flow

Model: Monetary Policy Shock

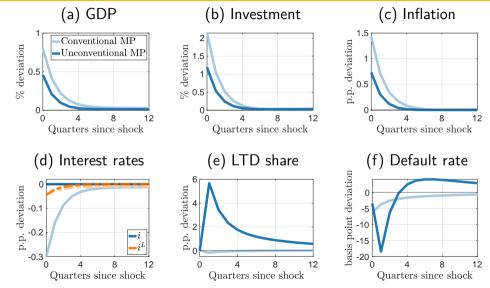
$$Q_{t}k_{it+1} = q_{it} + e_{it} + \frac{b_{it+1}^{S}}{b_{it}^{S}} + \left(\frac{b_{it+1}^{L}}{\pi_{t}} - \frac{(1-\gamma)b_{it}^{L}}{\pi_{t}}\right)p_{it}^{L}$$

Debt overhang:

- higher interest rate and lower inflation π_t increase debt overhang for all firms
- effect on capital stronger for firms with higher ex-ante default risk with higher M_{it}

- Heterogeneous responses to MP shock •Link
- Channel decomposition Link
- Exogenous variation in maturing bond share Link
- More LHS variables Link

Conventional monetary policy:


- shock to Taylor rule \Rightarrow nominal **ST** interest rate
- expected time path of ST rates \Rightarrow nominal LT interest rate

Unconventional monetary policy:

- shock to LT interest rate
- **ST** interest rate held constant

Unconventional Monetary Policy

Empirical Evidence

Model

Quantitative Analysis

 \Rightarrow dampened aggregate effects of Unconventional MP on output and inflation

Two reasons:

- 1. Investment partly financed by ST debt \Rightarrow lowering only LT rates less effective
- 2. Strong endogenous reaction of **debt maturity**:
 - flatter yield curve
 - \Rightarrow gradual and persistent build-up of LT debt
 - \Rightarrow medium-term increase of default rate and debt overhang
 - \Rightarrow dampened investment response

- 1. Introduction
- 2. Empirical Evidence

3. Model

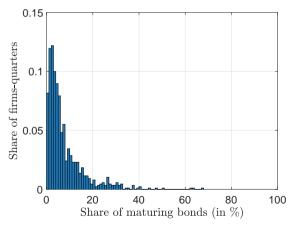
4. Quantitative Analysis

Question: Does corporate debt maturity matter for the effects of MP?

Empirically:

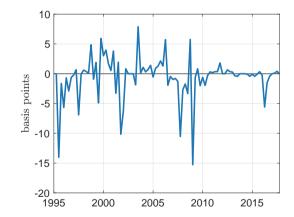
Firms react more when maturing bond share is larger

Quantitative model:

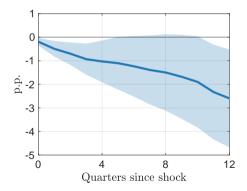

- roll-over risk and debt overhang together explain 90% of peak empirical estimate
- Unconventional MP (only LT rate) has larger effect on debt maturity but smaller effect on output and inflation than Conventional MP (ST + LT rate)

Thank you!

Appendix: Maturing Bond Share


▶ 6% of firm-quarters with $\mathcal{M}_{it} > 0$ ▶ Histogram conditional on $\mathcal{M}_{it} > 0$

• Histogram conditional on $\mathcal{M}_{it} > 0$:


Appendix: Monetary Policy Shocks

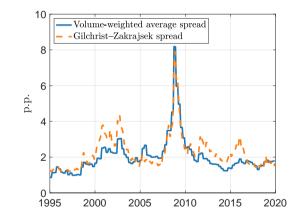
▶ back

Appendix: Average Capital Response

$$\log k_{it+h} - \log k_{it-1} = \delta_i^h + \delta_{sq}^h + \alpha_1^h \varepsilon_t^{\mathsf{MP}} + \nu_{it+h}^h$$

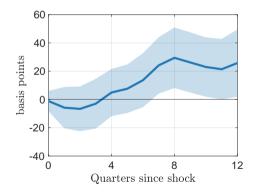
Introduction

Appendix: Robustness Details


$\Delta^{h+1} \log k_{it+h}$			
h = 0	h = 4	h = 8	h = 12
-0.0161	-0.129	-0.142	-0.0308
(0.0237)	(0.0837)	(0.0856)	(0.107)
-0.0221	-0.126*	-0.321***	-0.230***
(0.0186)	(0.0658)	(0.0779)	(0.0942)
-0.694***	-5.301***	-10.04***	-15.56***
(0.181)	(0.908)	(1.739)	(2.367)
-0.0200	0.0612	-0.205	-0.658
(0.0903)	(0.321)	(0.417)	(0.513)
-0.00197	0.0368	-0.104*	-0.165* ^{**} *
(0.0203)	(0.0527)	(0.0547)	(0.0558)
-0.284**	-2.304****	-3.330****	-4.198***
(0.128)	(0.582)	(1.019)	(1.235)
-0.0367	-0.113	ò.0699	0.339* [*]
(0.0453)	(0.268)	(0.286)	(0.151)
0.519***	1.230**	2.513****	2.972** [*] *
(0.103)	(0.483)	(0.764)	(0.927)
0.122* [*]	-0.0768	0.0132	0.223
(0.0606)	(0.170)	(0.263)	(0.338)
0.104	0.947***	0.821***	1.018***
(0.0689)	(0.197)	(0.236)	(0.268)
0.0461	-0.108	-0.264	-Ò.371* [*] *
(0.0632)	(0.136)	(0.196)	(0.164)
-0.00592	-0.240	-0.396	-0.445
(0.0486)	(0.271)	(0.438)	(0.564)
0.0255	0.00266	0.00278	0.0175
	(0.196)		(0.129)
	$\begin{array}{c} -0.0161 \\ (0.0237) \\ -0.0221 \\ (0.0186) \\ -0.694^{***} \\ (0.181) \\ -0.0200 \\ (0.0903) \\ -0.00197 \\ (0.0203) \\ -0.0367 \\ (0.128) \\ -0.0367 \\ (0.0453) \\ 0.519^{***} \\ (0.103) \\ 0.122^{**} \\ (0.0606) \\ 0.104 \\ (0.0632) \\ -0.00592 \\ (0.0486) \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c cccc} h=0 & h=4 & h=8 \\ \hline & -0.0161 & -0.129 & -0.142 \\ (0.0237) & (0.0837) & (0.0856) \\ -0.0221 & -0.126^* & -0.321^{***} \\ (0.0186) & (0.0658) & (0.0779) \\ -0.694^{***} & -5.301^{***} & -10.04^{***} \\ \hline & (0.181) & (0.908) & (1.739) \\ -0.0200 & 0.0612 & -0.205 \\ (0.9003) & (0.321) & (0.417) \\ -0.00197 & 0.0368 & -0.104^* \\ (0.0203) & (0.0527) & (0.0547) \\ -0.284^* & -2.304^{***} & -3.330^{***} \\ (0.128) & (0.582) & (1.019) \\ -0.0367 & -0.113 & 0.0699 \\ (0.0453) & (0.268) & (0.286) \\ 0.519^{***} & 1.230^{**} & 2.513^{***} \\ \hline & (0.103) & (0.483) & (0.764) \\ 0.122^{**} & -0.0768 & 0.0132 \\ (0.0669) & (0.170) & (0.236) \\ 0.0461 & -0.108 & -0.264 \\ \hline & (0.0632) & (0.136) & (0.196) \\ -0.00592 & -0.240 & -0.396 \\ (0.0486) & (0.271) & (0.438) \\ 0.0255 & 0.00266 & 0.00278 \\ \end{array}$

Introduction

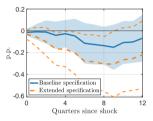
Quantitative Analysis


Appendix: Credit Spreads

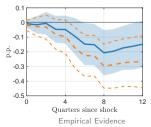
▶ back

Appendix: Average Credit Spread Response

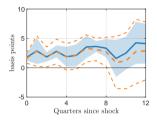
$$\mathsf{Spread}_{it+h} - \mathsf{Spread}_{it-1} = \,\delta^h_i + \delta^h_{sq} + \,\alpha^h_1 \varepsilon^{\mathsf{MP}}_{t} + \nu^h_{it+h}$$

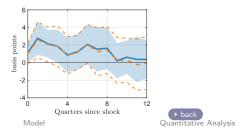

Introduction

Empirical Evidence

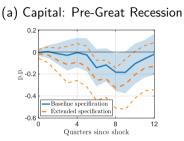

Quantitative Analysis

Appendix: Alternative MP shocks

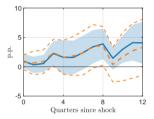

(a) Capital: Miranda-Agrippino Ricco

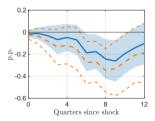

(c) Capital: Bauer Swanson

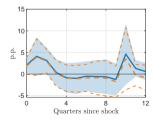
(c) Spread: Miranda-Agrippino Ricco



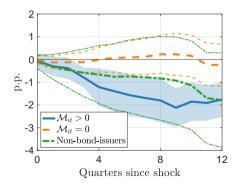
(d) Spread: Bauer Swanson




Appendix: Alternative Time Samples

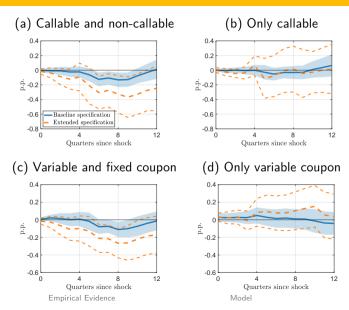

(b) Spread: Pre-Great Recession

(b) Capital: Exclude Great Recession

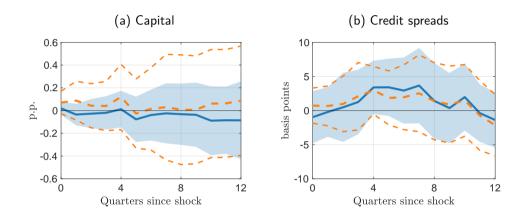


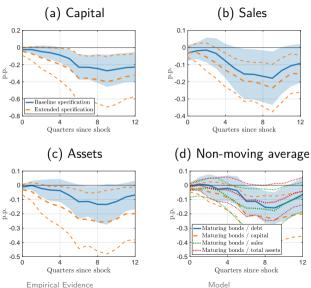
Empirical Evidence

Model


Appendix: Including Non-bond-issuing Firms

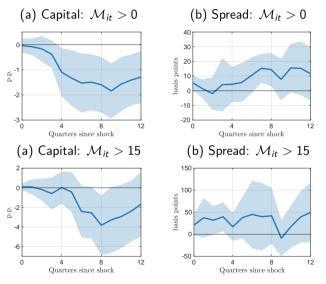
$$\Delta^{h+1} \log k_{it+h} = \beta^{h}_{\mathcal{M}>0,0} \mathbb{1} \{ \mathcal{M}_{it} > 0 \} + \beta^{h}_{\mathcal{M}=0,0} \mathbb{1} \{ \mathcal{M}_{it} = 0 \}$$
$$+ \beta^{h}_{\mathcal{M}>0,1} \mathbb{1} \{ \mathcal{M}_{it} > 0 \} \varepsilon^{mp}_{t} + \beta^{h}_{\mathcal{M}=0,1} \mathbb{1} \{ \mathcal{M}_{it} = 0 \} \varepsilon^{mp}_{t}$$
$$+ \beta^{h}_{non-issuer,1} \{ Non-bond-issuer_i \} \varepsilon^{mp}_{t} + \Gamma Z_{it} + \gamma^{h}_{1} \Delta gdp_{t-1} + \delta^{h}_{i} + \delta^{h}_{st} + \nu^{h}_{it+h} \}$$


Appendix: Callable Bonds and Variable-coupon Bonds


Introduction

Appendix: Compustat Maturing Debt Share

Appendix: Alternative Denominators in \mathcal{M}_{it}



Quantitative Analysis

Introduction

Empirical Evidence

Appendix: Non-linear Specifications using Dummy Variables

Introduction

Empirical Evidence

Model

Appendix: Model Setup

$$\begin{split} V\left(q, b, z', S\right) &= \max_{\substack{\phi(q, b, z', S) = \left\{k', e \geq g, b^{S'}, b^{L'}\right\}}} -e - G(e) - H\left(b^{S'}, b^{L'}, b/\pi\right)} \\ &+ \mathbb{E}\Lambda' \int_{\overline{\varepsilon}'}^{\infty} \left[(1 - \kappa) V\left(q', b', z'', S'\right) + \kappa \left(q' - \frac{b'}{\pi'} g(q', b', z'', S')\right) \right] \varphi(\varepsilon') d\varepsilon' \\ \text{subject to:} \quad q' = Q'k' - \frac{b^{S'}}{\pi'} - \frac{\gamma b^{L'}}{\pi'} + (1 - \tau) \left[p'y' - w'l' + (\varepsilon' - \delta)Q'k' - f - \frac{c(b^{S'} + b^{L'})}{\pi'} \right] \\ y' = z' \left(k'\psi'l^{-1-\psi}\right)^{\zeta} , \quad \text{where:} \quad l' = \left(\zeta(1 - \psi)p'z'k'^{\psi}\zeta/w'\right)^{\frac{1}{1-\zeta(1-\psi)}} \\ \overline{\varepsilon}' : \quad (1 - \kappa) \mathbb{E}V\left(q', b', z'', S'\right) + \kappa \left(q' - \frac{b'}{\pi'} \mathbb{E}g(q', b', z'', S')\right) = 0 \\ Q'k' = q + e + b^{S'}\rho^{S} + \left(b^{L'} - \frac{b}{\pi}\right)\rho^{L} \\ b' = (1 - \gamma)b^{L'} \\ p^{S} = \mathbb{E}\Lambda' \left[\left[1 - \Phi(\overline{\varepsilon}') \right] \frac{1 + c}{\pi'} + \frac{(1 - \xi)}{b^{S'} + b^{L'}} \int_{-\infty}^{\overline{\varepsilon}'} q' \varphi(\varepsilon') d\varepsilon' \right] \\ p^{L} = \mathbb{E}\Lambda' \left[\int_{\overline{\varepsilon}'}^{\infty} \frac{\gamma + c + (1 - \gamma)g\left(q', b', z'', S'\right)}{\pi'} \varphi(\varepsilon') d\varepsilon' + \frac{(1 - \xi)}{b^{S'} + b^{L'}} \int_{-\infty}^{\overline{\varepsilon}'} q' \varphi(\varepsilon') d\varepsilon' \right] \\ \text{Empirical Evidence} \\ \text{Model} \end{split}$$

▶ back

Introduction

Table: Externally calibrated parameters

Parameter	Description	Value	
β	preference parameter	0.99	
С	debt coupon	1/eta-1	
θ	inverse Frisch elasticity	0.5	
ζ	production technology	0.75	
ψ	production technology	0.33	
δ	depreciation rate	0.025	
γ	repayment rate long-term debt	0.05	
au	corporate income tax	0.4	
ρ	demand elasticity retail goods	10	
λ	λ price adjustment cost parameter		
ϕ	capital goods technology	4	
$arphi^{mp}$	Taylor rule	1.25	
$ ho^{mp}$	Taylor rule	0.5	

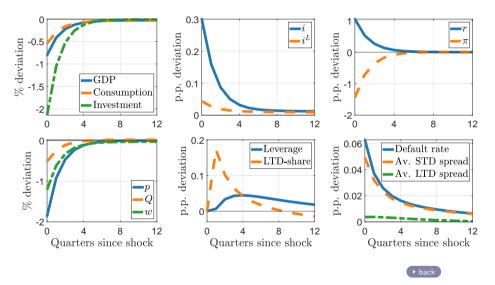
Empirical Evidence

Table: Internally calibrated parameters

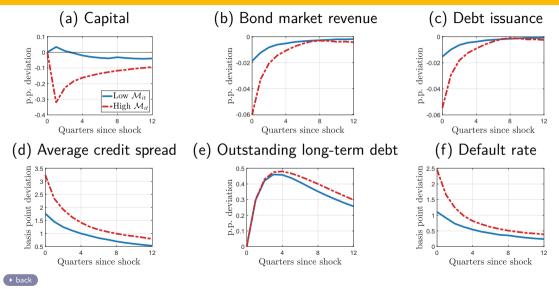
Parameter	Value	Target	Data	Model
ρ_z	0.988	Regression $log(k)$ on age	0.022	0.024
Ī	0.300	Std. of firm capital growth (in %)	16.8	15.0
$\sigma_{arepsilon \mid z \leq \mathbb{E}(z)}$	0.60	Mean firm leverage (in %)	34.4	30.9
$\sigma_{\varepsilon z > \mathbb{E}(z)}$	0.88	Regression leverage on age	0.196	0.225
ξ	0.54	Mean credit spread on long-term debt (in %)	3.1	2.7
η	0.0045	Mean share of debt due within a year (in %)	30.5	30.6
u	0.0005	Mean equity issuance / assets (in %)	11.4	15.0
κ	0.0151	Firm exit rate <i>(in %)</i>	2.2	2.1
f	0.2606	Steady state value of firm entry	-	0

▶ back

Reiter (2009):


- 1. global solution of steady state
 - idiosyncratic firm-level shocks z_{it} and ε_{it}
 - stationary firm distribution $\mu(q, b, z')$
 - computational challenge in models of risky long-term debt: p^L
 - value function iteration and interpolation

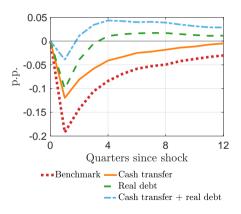
2. perturbation for aggregate dynamics

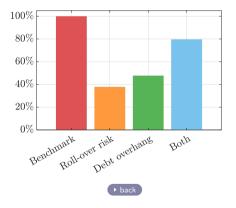

- aggregate monetary policy shock
- first-order linear approximation

▶ back

Appendix: Aggregate responses to MP shock

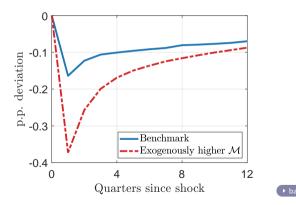
Appendix: Heterogeneous responses to MP shock

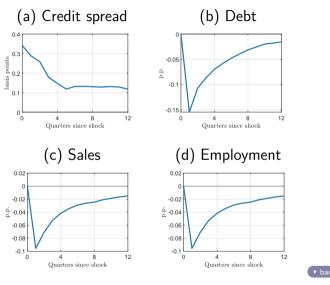



Introduction

Appendix: Channel Decomposition

(a) Excess capital response


(b) Peak response



Appendix: Exogenous Variation in Maturing Bond Share

Average firm capital response:

Appendix: More LHS Variables (Quantitative Model)

Empirical Evidence

Model

Quantitative Analysis

Appendix: Model Setup Unconventional MP

Stochastic discount factor $\Lambda_{t,t+1}^{S}$ prices:

short-term debt

Stochastic discount factor $\Lambda_{t,t+1}^{L}$ prices:

- ► long-term debt
- equity

Segmented asset markets:

$$\Lambda_{t,t+1}^L = (1 + \eta_t^{ts}) \Lambda_{t,t+1}^S$$

 \Rightarrow persistent term structure shock $\eta_t^{\rm ts}$